
HPML blogposts
Release 0.1

Bryan Cardenas Guevara

Dec 06, 2022

TUTORIALS:

1 SURF HPML documentation! 1

2 Contents: 3

i

ii

CHAPTER

ONE

SURF HPML DOCUMENTATION!

The high performance machine learning group at SURF facilitates efficient deep learning usage on the Dutch national
supercomputer. Here we provide the documentation for our tutorials, presentations and blogposts!

Our group has in-house expertise on several topics including computational histopathology, GPU programming, physics
informed DL, multi-modal Learning and large language modelling! For more information please go to this post about
ML in HPC environments!

Warning: This project is currently under verocious development.

This GitHub template includes tutorials, blogposts and slides.

SURF Website: https://www.surf.nl/
Repository: https://github.com/Cryptheon/hpml-surf
Author: Bryan Cardenas Guevara

1

https://www.surf.nl/en/high-performance-machine-learning-efficient-and-scalable-machine-learning-in-hpc-environments
https://www.surf.nl/
https://github.com/Cryptheon/hpml-surf

HPML blogposts, Release 0.1

2 Chapter 1. SURF HPML documentation!

CHAPTER

TWO

CONTENTS:

2.1 Large Language Models on Snellius

In this post we demonstrate how to run a large language model on Snellius. The main purpose of this small experiment
was explorative in nature; to which extent can we perform generation or latent extraction on Snellius? How much
compute is needed for a single prompt?

We will mainly discuss:

1. How we got it working on Snellius.

2. how to run it.

3. a few examples.

The main repository and the tested downloaded models can be found on Snellius under /projects/0/hpmlprjs/
GALACTICA/. For now, we named it GALACTICA as it was solely intended for the new Meta’s Galactica scientific
models. Although, we could use any causal language model uploaded to the Huggingface Huggingface hub. More
specifically, any model that can be loaded using AutoTokenizer and AutoModelForCausalLM. Do note

Note: Testing is still necessary as some models break under specific PyTorch, transformers or DeepSpeed versions.

Warning: This blog is mainly intended for the HPML members for now. A more public version is coming soon,
GPUs near you.

For now we have tested four different language models:

• BLOOM, a multi-language language model (40+ languages)

• Galactica 6.7b, the galactic models are a family of LMs trained solely on scientific data

• OPT-30b, LM trained on 800GB of text data (180B tokens).

• GPT-NeoX-20b, LM trained by EleutherAI on The Pile

These models all have one clearly overlapping feature; they are decoder-transformers similar in shape to GPT-2 and
GPT-3. It stands to overemphasize that each has their own qualities and desired properties and as such, it would be
beneficial to keep a few of these models on Snellius as the need arises.

3

https://github.com/sara-nl/Galactica_Snellius
https://galactica.org/
https://huggingface.co/models?sort=downloads&search=language+model
https://huggingface.co/bigscience/bloom
https://huggingface.co/facebook/galactica-6.7b
https://huggingface.co/facebook/opt-30b
https://huggingface.co/EleutherAI/gpt-neox-20b
https://arxiv.org/abs/2101.00027

HPML blogposts, Release 0.1

2.1.1 1. How we got it running on Snellius

We will see how we downloaded and loaded the model for generation.

Let’s take galactica uploaded by Meta on Huggingface as an example. The sharded model can be found under files
and versions. We first need to have git lfs installed to be able to download these files on our disk.

We can use

git lfs clone https://huggingface.co/facebook/galactica-6.7b/

or we can just use git clone in this case.

Note: Using git lfs for larger language models such as BLOOM-176b, we would first be downloading specific binaries
that would need to be constructed afterwards by running git lfs checkout.

Let’s look at how to load this model using Hugginface. We use transformers==4.21 and accelerate, which is
Hugginface’s own distributed computing framework that will make our lives easier for now.

Loading the Tokenizer and Model

To avoid bloat and confusion we show the important parts only, please take a look at ./GALACTICA/lm_gen.py for
more details.

tokenizer = AutoTokenizer.from_pretrained(args.model_path)

kwargs = dict(device_map="auto", load_in_8bit=False)

model = AutoModelForCausalLM.from_pretrained(args.model_path, **kwargs)

Here we see how we prepare the tokenizer and load the model for the given model path. In this case we use /
GALACTICA/langauge_models/galactica-6.7b, in which we can find the model weights and the tokenizer. In
kwargs we can see device_map="auto" and load_in_8bit=False.

With the former we tell the accelerate framework to load the checkpoint automatically. The accelerate framework
enables us to run a model in any distributed configuration, it supports sharded models and full checkpoints. The model
gets loaded first by initializing a model with meta (read: empty) weights and then it determines how to load the sharded
model across the available GPUs. It employs a simple pipeline parallelism method and while this is not the most efficient
method, it’s the most flexible for a large variety of models. See this language modeling guide for a quick glance in how
this works. For instance, with ./GALACTICA/lm_gen.py we could load BLOOM 176b model with only one GPU! It
might not be the most efficient execution, but hey, it works :).

The latter argument load_in_8bit makes it possible to load in a model while using less memory. This approach
8-bit quantizes the model with super minimal performance loss. The main idea is to make large language models more
accessible with a smaller infrastructure. For instance, this method allows us to load the full BLOOM 176b model on
eight A100 40GB GPUs, as opposed to using 16 A100 GPUs. However, as nothing is free in life, this comes at the cost
of inference time. We can expect forward propagation slow downs of 16-40%. I encourage you to read this blog post
as it’s a good read (or, the paper).

4 Chapter 2. Contents:

https://huggingface.co/facebook/galactica-6.7b
https://git-lfs.github.com/
https://huggingface.co/docs/accelerate/index
https://huggingface.co/docs/accelerate/usage_guides/big_modeling
https://huggingface.co/blog/hf-bitsandbytes-integration
https://arxiv.org/abs/2208.07339

HPML blogposts, Release 0.1

Generation

As we tokenize our input and load our model we can easily generate a piece of text given our input by using Hugging-
face’s generate function which is implemented for CausalLMs:

generate_kwargs = dict(max_new_tokens=args.num_tokens, do_sample=True, temperature=args.
→˓temperature)

outputs = model.generate(**input_tokens, **generate_kwargs)

I trust that most of these arguments are familiar to us. The input tokens is a dictionary containing the tokenized
input text (input_ids), an optional attention mask and token_type_ids. For the record, token_type_ids is
not accepted by galactica-type models. Most of the time we are only interested in the input_ids, but some models
require the other tensors as input as well.

DeepSpeed-Inference

The script ./GALACTICA/lm_gen_ds.py contains code to run model inference with deepspeed. The biggest difference
with ./GALACTICA/lm_gen.py is the way deepspeed has to be initialized. Luckily, for our purposes for now this can
remain minimal:

model = deepspeed.init_inference(
model=model, # Transformers models
dtype=torch.float16, # dtype of the weights (fp16)
replace_method=None, # Lets DS autmatically identify the layer to replace
replace_with_kernel_inject=False, # replace the model with the kernel injector

)

Deepspeed deploys Tensor parallelism that mainly distributes each layer ‘’horizontally”; it splits up the layer and dis-
tributes it across the GPUs, each shard then lives on its appointed gpu. Additionally, it gives us the capability to replace
some modules with specialized CUDA kernels to run these layers faster. I’ve run this but we are not getting the correct
output. This should be fixable though.

We have been having OOM problems running lm_gen with the deepspeed launcher. The galactica-6.7b model and
any smaller model should work without the deepspeed launcher but we are yet to fix this for models such as gpt-neox-
20b or bigger. We consistently see a 2x speedup using Deepspeed. Check out this tutorial that helped us setting this
up.

Deepspeed ZeRO is an add-on to the usual DeepSpeed pipeline, it also performs sharding in a tensor parallelism fashion
but with, what they call, ‘’stage 3” it is able to do some intelligent tensor off-loading. This can come in particularly
handy with large models such as BLOOM 176b or OPT-175b. We haven’t been able to get this one off the grounds for
reasons unknown; it seems to get stuck forever, while generating with regular deepspeed takes a few seconds.

See the following links for more information about ZeRO stage-3:

1. https://www.deepspeed.ai/2021/03/07/zero3-offload.html

2. https://www.deepspeed.ai/tutorials/zero/

3. https://www.deepspeed.ai/2022/09/09/zero-inference.html

2.1. Large Language Models on Snellius 5

https://www.philschmid.de/gptj-deepspeed-inference
https://www.deepspeed.ai/2021/03/07/zero3-offload.html
https://www.deepspeed.ai/tutorials/zero/
https://www.deepspeed.ai/2022/09/09/zero-inference.html

HPML blogposts, Release 0.1

2.1.2 2. How to run as a module on Snellius

To module load OptimizedLMs add the following line to your bashrc:

export MODULEPATH="$MODULEPATH:/projects/0/hpmlprjs/scripts
source ~/.bashrc

Now we can load the module you linked to in your .bashrc.

module load OptimizedLMs

And then run with

lm_gen model_choice input output num_tokens temperature

Anoter way is to load and install your own packages:

The scripts ./GALACTICA/lm_gen.py and ./GALACTICA/lm_gen_ds.py can be run as is with the correct depen-
dencies.

module load 2021
module load Python/3.9.5-GCCcore-10.3.0
module load PyTorch/1.11.0-foss-2021a-CUDA-11.6.0
module load Miniconda3/4.9.2

pip install mpi4py, deepspeed, pydantic
pip install transformers==4.24, accelerate

And then run:

python lm_gen.py --model_path ./language_models/galactica-6.7b/ --batch_size 2␣
→˓--num_tokens 1000 --input_file ./texts/inputs/geny.txt --temperature 0.95 --
→˓output_file ./texts/generations/out

Supported Models

For now, we have briefly tested the following models with accelerate.

1. galactica-6.7b

2. opt-30b

3. gpt-neox-20b

4. BLOOM

The weights of these models live under /projects/0/hpmlprjs/GALACTICA/language_models/.

Attention: As of now, deepspeed-inference is only compatible with galactica-6.7b.

6 Chapter 2. Contents:

HPML blogposts, Release 0.1

2.1.3 3. Examples

Let’s run a few examples.

lm_gen galactica-6.7b alpha.txt out 75 0.95

Where alpha.txt contains:

"The function of proteins is mainly dictated by its three dimensional␣
→˓structure. Evolution has played its part in"

Output:

The function of proteins is mainly dictated by its three dimensional structure. Evolution has played its part in selecting
the best possible protein structure that can perform its functions. This structure is called native structure and it cor-
responds to the minimum of potential. There are several methods to compute the structure of a protein starting from
amino acid sequence. With the help of evolutionary knowledge, experimental information and many other techniques
like computational tools etc. we have made significant progress in prediction of

This took 5.5s to generate excluding model loading (the model fits in memory). We actually generated a batch of 4
examples in 5.5s. With lm_gen_ds we generate this same batch size in 2.7s! For reference, running opt-30b with
lm_gen takes 8s.

If you feel like it, you can run lm_gen BLOOM input out 50 0.95 and see how it takes ~40 minutes to run.

2.2 Profiling with PyTorch

[]: # Kill old TensorBoard sessions
import os
username = os.getenv('USER')
!kill -9 $(pgrep -u $username -f "multiprocessing-fork")
!kill -9 $(pgrep -u $username tensorboard)

[]: import os
from typing import Sequence, Tuple
from datetime import datetime

import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.utils.data import Dataset
import torchmetrics.functional as metrics
import numpy as np
from torchvision import datasets, transforms, models
import matplotlib.pyplot as plt

%matplotlib inline

DATA_PATH = os.getenv('TEACHER_DIR', os.getcwd()) + '/JHL_data'
os.environ["OMP_NUM_THREADS"]="3"

2.2. Profiling with PyTorch 7

HPML blogposts, Release 0.1

2.2.1 What is profiling?

According to wikipedia:

“Profiling is a form of dynamic program analysis that measures, for example, the space (memory) or time complexity
of a program, the usage of particular instructions, or the frequency and duration of function calls. Most commonly,
profiling information serves to aid program optimization, and more specifically, performance engineering.”

What this means is that you analyse your program, trying to identify bottlenecks, and thereby optimizing it’s execution.
As an example, you might have an application needs to read a lot of input data (quite typical in machine learning!)
during its run. A profile might show you that while your code runs, your processor is mostly idling since it is waiting
for input data. This might give you a hint on how to optimize your program: maybe you can read in part of the input,
and already start computing on that while you’re loading in your next samples. Or: maybe you can copy your data to a
faster disk, before you start running.

2.2.2 Why should I care about profiling?

You may know that training large models like GPT-3 takes several million dollars source and a few hundred MWh
source. If the engineers that trained these models did not spend time on optimization, it might have been several
million dollars and hunderds of MWh more.

Sure, the model you’d like to train is probably not quite as big. But maybe you want to train it 10000 times, because
you want to do hyperparameter optimization. And even if you only train it once, it may take quite a bit of compute
resources, i.e. money and energy.

2.2.3 When should I care about profiling?

Well, you should always care if your code runs efficiently, but there’s different levels of caring.

From personal experience: if I know I’m going to run a code only once, for a few days, on a single GPU, I’ll probably
not create a full profile. What I would do is inspect my GPU and CPU utilization during my runs, just to see if it is
somewhat efficient, and if I didn’t make any obvious mistakes (e.g. accidentally not using the GPU, even if I have one
available).

If I know that I’ll run my code on multiple GPUs, for multiple days, (potentially) on multiple nodes, and/or I need to
run it multiple times, I know that my resource footprint is going to be large, and it’s worth spending some time and
effort to optimize the code. That’s when I’ll create a profile. The good part is: the more often you do it, the quicker
and more adapt you become at it.

2.2.4 Define the necessary functions of code

First, we will define the necessary functions to run the training. That means we define - A model (as a class deriving
from nn.Module) - Some code to plot the accuracy / loss curves - Some code to set the device on which we want to
execute - A train & test loop (this time with some profiling code)

8 Chapter 2. Contents:

https://en.wikipedia.org/wiki/Profiling_(computer_programming)
https://lambdalabs.com/blog/demystifying-gpt-3/
https://www.theregister.com/2020/11/04/gpt3_carbon_footprint_estimate/

HPML blogposts, Release 0.1

Define model

[]: class CIFAR10CNN(nn.Module):
def __init__(self):

super().__init__()

4 convolution layers, with a non-linear activation after each.
maxpooling after the activations of the 2nd, 3rd, and 4th conv layers
2 dense layers for classification
log_softmax
#
As for the number of channels of each layers, try to experiment!

self.feature_extractor = nn.Sequential(
nn.Conv2d(in_channels=3, out_channels=8, kernel_size=3, padding=1),
nn.ReLU(),

nn.Conv2d(in_channels=8, out_channels=32, kernel_size=3, padding=1),
nn.ReLU(),
nn.MaxPool2d(kernel_size=2),

nn.Conv2d(in_channels=32, out_channels=64, kernel_size=3, padding=1),
nn.ReLU(),
nn.MaxPool2d(kernel_size=2),

nn.Conv2d(in_channels=64, out_channels=128, kernel_size=3, padding=1),
nn.ReLU(),
nn.MaxPool2d(kernel_size=2),

)

in_features of the first layer should be the product of the output shape of␣
→˓your feature extractor!

E.g. if the output of your feature extractor has size (batch x 128 x 4 x 4),␣
→˓in_features = 128*4*4=2048

self.classifier = nn.Sequential(
nn.Flatten(),
nn.Linear(in_features=2048, out_features=2048),
nn.ReLU(),
nn.Linear(in_features=2048, out_features=10),
nn.LogSoftmax(dim=1)

)

def forward(self, x):
features = self.feature_extractor(x)

return self.classifier(features)

2.2. Profiling with PyTorch 9

HPML blogposts, Release 0.1

Define function for plotting metric curves

[]: def plot_metric_curve(
train_metric: Sequence[float],
val_metric: Sequence[float],
n_epochs: int,
metric_name: str, # Label of the y-axis, e.g. 'Accuracy'
x_axis_name: str = 'Epoch'

):
create values for the x-axis
train_steps, val_steps = map(

lambda metric_values: np.linspace(start=0, stop=n_epochs, num=len(metric_
→˓values)),

(train_metric, val_metric)
)

plt.plot(train_steps, train_metric, label='train')
plt.plot(val_steps, val_metric, label='validation')
plt.title(f"{metric_name} vs. {x_axis_name}")
plt.legend()
plt.show()

Define some code to select the right device

[]: use_cuda = torch.cuda.is_available()
print(f"CUDA is {'' if use_cuda else 'not '}available")
device = torch.device("cuda" if use_cuda else "cpu")

if use_cuda:
torch.cuda.set_per_process_memory_fraction(0.22)

Define train and test loop

The train(...) function is just for reference: this is the same train function you used in the CIFAR10 hands-on
earlier. Then, we define the train_profiling(...) function, which is essentially the same training loop, but with
the necessary code added to generate the profiles. Finally, we specify the test(...) function. This is the same as
from the CIFAR10 hands-on earlier, but note that in theory we could also profile the testing part. Usually, training
takes by far the most time, and is therefore the most important to optimize. There are exceptions however, e.g. if you
use certain metrics that are very heavy to compute, and you want to compute those on a large test dataset. In that case,
optimizing the test loop might make sense as well.

[]: # This train(...) loop is just for reference, so that you can compare to train_
→˓profiling(...)
def train(model, device, train_loader, optimizer, epoch, log_interval=10):

model.train()
for batch_idx, (data, target) in enumerate(train_loader):

move data and target to the gpu, if available and used
data, target = map(lambda tensor: tensor.to(device, non_blocking=True), (data,␣

→˓target))

(continues on next page)

10 Chapter 2. Contents:

HPML blogposts, Release 0.1

(continued from previous page)

optimizer.zero_grad()
output = model(data)
loss = F.nll_loss(output, target)
loss.backward()
optimizer.step()

accuracy = metrics.accuracy(output, target)

if batch_idx % log_interval == 0:
print(

f'Train Epoch: {epoch} [{batch_idx * len(data)}/{len(train_loader.
→˓dataset)} ({100 * batch_idx / len(train_loader):.0f}%)]'

f'\tLoss: {loss.detach().item():.6f}'
f'\tAccuracy: {accuracy.detach().item():.2f}'

)

yield loss.detach().item(), accuracy.detach().item()

This is the actual train loop we will use for profiling
def train_profiling(model, device, train_loader, optimizer, epoch, log_interval, logdir,␣
→˓break_idx=None):

model.train()

Create a torch.profiler.profile object, and call it as the last part of the␣
→˓training loop
with torch.profiler.profile(
activities=[

torch.profiler.ProfilerActivity.CPU,
torch.profiler.ProfilerActivity.CUDA],

schedule=torch.profiler.schedule(
wait=10,
warmup=10,
active=10),

on_trace_ready=torch.profiler.tensorboard_trace_handler(logdir, worker_name='worker0
→˓'),

record_shapes=True,
profile_memory=True, # This will take 1 to 2 minutes. Setting it to False could␣

→˓greatly speedup.
with_stack=True

) as p:
for batch_idx, (data, target) in enumerate(train_loader):

move data and target to the gpu, if available and used
data, target = map(lambda tensor: tensor.to(device, non_blocking=True),␣

→˓(data, target))

optimizer.zero_grad()
output = model(data)
loss = F.nll_loss(output, target)
loss.backward()
optimizer.step()

accuracy = metrics.accuracy(output, target)

(continues on next page)

2.2. Profiling with PyTorch 11

HPML blogposts, Release 0.1

(continued from previous page)

if batch_idx % log_interval == 0:
print(

f'Train Epoch: {epoch} [{batch_idx * len(data)}/{len(train_loader.
→˓dataset)} ({100 * batch_idx / len(train_loader):.0f}%)]'

f'\tLoss: {loss.detach().item():.6f}'
f'\tAccuracy: {accuracy.detach().item():.2f}'

)

yield loss.detach().item(), accuracy.detach().item()

p.step()

Allow to break early for the purpose of shorter profiling
if (break_idx is not None) and (batch_idx == break_idx):

break

We leave the test loop unchanged. One thing to note though is that the test loop is␣
→˓decorated
with the @torch.no_grad() decorator. This tells PyTorch that it doesn't need to compute␣
→˓gradients
in the test loops, as those are not needed. This will speed up execution.
@torch.no_grad()
def test(model, device, test_loader):

model.eval()
test_loss = 0
correct = 0

for data, target in test_loader:
move data and target to the gpu, if available and used
data, target = map(lambda tensor: tensor.to(device, non_blocking=True), (data,␣

→˓target))

get model output
output = model(data)

calculate loss
test_loss += F.nll_loss(output, target, reduction='sum').item() # sum up batch␣

→˓loss

get most likely class label
pred = output.argmax(dim=1, keepdim=True) # get the index of the max log-

→˓probability

count the number of correct predictions
correct += pred.eq(target.view_as(pred)).sum().item()

test_loss /= len(test_loader.dataset)

print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
test_loss, correct, len(test_loader.dataset),
100 * correct / len(test_loader.dataset)))

(continues on next page)

12 Chapter 2. Contents:

HPML blogposts, Release 0.1

(continued from previous page)

yield test_loss, correct / len(test_loader.dataset)

Specify the fitting function

Here, we combine the functions we defined above into a single function that will take care of the training, validation,
loop over multiple epochs, and finally plot the results. Note that we call the train_profiling function from here,
which is the one that will generate the profile.

[]: def fit_profiling(model, optimizer, n_epochs, device, train_loader, test_loader, log_
→˓interval, logdir, break_idx):

get the validation loss and accuracy of the untrained model
start_val_loss, start_val_acc = tuple(test(model, device, test_loader))[0]

don't mind the following train/test loop logic too much, if you want to know what's␣
→˓happening, let us know :)
normally you would pass a logger to your train/test loops and log the respective␣

→˓metrics there
(train_loss, train_acc), (val_loss, val_acc) = map(lambda arr: np.asarray(arr).

→˓transpose(2,0,1), zip(*[
(

[*train_profiling(model, device, train_loader, optimizer, epoch, log_
→˓interval, logdir, break_idx)],

[*test(model, device, test_loader)]
)
for epoch in range(n_epochs)

]))

flatten the arrays
train_loss, train_acc, val_loss, val_acc = map(np.ravel, (train_loss, train_acc, val_

→˓loss, val_acc))

prepend the validation loss and accuracy of the untrained model
val_loss, val_acc = (start_val_loss, *val_loss), (start_val_acc, *val_acc)

plot_metric_curve(train_loss, val_loss, n_epochs, 'Loss')
plot_metric_curve(train_acc, val_acc, n_epochs, 'Accuracy')

Defining a custom dataloader

One of the things we learn in this profiling tutorial is the importance of an efficient data I/O pipeline. We start here
with a simple custom PyTorch Dataset. This Dataset can read individual *.png images from a directory, and can be
passed a single *.pkl file with all the labels in a dictionary that is indexed by the filenames of the image files (so that
we know which label belongs to which image).

[]: import pickle
import glob
from torchvision.io import read_image
from PIL import Image

(continues on next page)

2.2. Profiling with PyTorch 13

HPML blogposts, Release 0.1

(continued from previous page)

class Cifar10PNGDataset(Dataset):
def __init__(self, label_file, img_dir, transform=None, target_transform=None):

Load labels
with open(label_filename, 'rb') as fo:

self.label_dict = pickle.load(fo, encoding='bytes')
List filenames with png extension
self.img_filenames = glob.glob(os.path.join(img_dir, '*.png'))
self.transform = transform
self.target_transform = target_transform

def __len__(self):
return len(self.label_dict)

def __getitem__(self, idx):
Get filename with index idx:
img_filename = self.img_filenames[idx]
Read file from disk
image = read_image(img_filename)
image = Image.open(img_filename)
Read label from label dictionary
label = self.label_dict[os.path.basename(img_filename)]
if self.transform:

image = self.transform(image)
if self.target_transform:

label = self.target_transform(label)
return image, label

Let’s check that our dataloader actually works. It should show an image and its corresponding label. You can change
the sample_idx to check different samples

[]: PNG_DATA = os.path.join(DATA_PATH, 'cifar10_png')
label_filename = os.path.join(DATA_PATH, "labels.pkl")
train_dataset = Cifar10PNGDataset(label_file = label_filename, img_dir = PNG_DATA)

Inspect one image and one label as example:
sample_idx = 0
img_sample = train_dataset[sample_idx][0]
label_sample = train_dataset[sample_idx][1]

#plt.imshow(img_sample.permute(1,2,0))
plt.imshow(img_sample)
print(f"Label: {label_sample}")
print(f"(0 = airplane, 1 = automobile, 2 = bird, 3 = cat, 4 = deer, 5 = dog, 6 = frog, 7␣
→˓= horse, 8 = ship, 9 = truck)")

14 Chapter 2. Contents:

HPML blogposts, Release 0.1

2.2.5 Creating the profile

To create the profile, we now run a single epoch of the training

[]: BATCH_SIZE = 128
EPOCHS = 1
LEARNING_RATE = 1e-4
NUM_DATALOADER_WORKERS = 1
BREAK_AFTER_N_ITERATIONS = 60

LOGGING_INTERVAL = 10 # Controls how often we print the progress bar

model = CIFAR10CNN().to(device)
optimizer = optim.Adam(model.parameters(), lr=LEARNING_RATE) # optim.<OPTIMIZER_FLAVOUR>
→˓(model.parameters(), lr=LEARNING_RATE)

transform=transforms.Compose([
transforms.ToTensor(),
Normalize the data to 0 mean and 1 standard deviation, now for all channels of RGB
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))

])

PNG_DATA = os.path.join(DATA_PATH, 'cifar10_png')
label_filename = os.path.join(DATA_PATH, "labels.pkl")
train_dataset = Cifar10PNGDataset(label_file = label_filename, img_dir = PNG_DATA,␣
→˓transform=transform)

train_loader = torch.utils.data.DataLoader(
train_dataset,
batch_size=BATCH_SIZE,
pin_memory=use_cuda,
shuffle=True,
num_workers=NUM_DATALOADER_WORKERS

)

test_loader = torch.utils.data.DataLoader(
datasets.CIFAR10(DATA_PATH, train=False, transform=transform, download=True),
batch_size=BATCH_SIZE,
pin_memory=use_cuda,
shuffle=False,
num_workers=NUM_DATALOADER_WORKERS

)

logdir = "logs/baseline/" + datetime.now().strftime("%Y%m%d-%H%M%S")

fit_profiling(model, optimizer, EPOCHS, device, train_loader, test_loader, LOGGING_
→˓INTERVAL, logdir, BREAK_AFTER_N_ITERATIONS)

2.2. Profiling with PyTorch 15

HPML blogposts, Release 0.1

2.2.6 Inspect the profile

Now that we have generated a profile, we want to inspect it. For that, we will start a TensorBoard session in the cell
below. It will give you a link to the running tensorboard instance.

If, for some reason, you were not able to generated the logs yourself, you can uncomment the line logdir = ... and
inspect a reference profile that we generated for you.

WARNING: profiles (so called ‘trace files’) contain a lot of data. It may take a while (up to a minute or so) before the
TensorBoard interface actually displays the data.

[]: %%capture --no-stdout

REFERENCE PROFILE:
logdir = os.path.join(DATA_PATH,"logs/baseline/ref")

import random, os

rand_port = random.randint(6000, 8000)
username = os.getenv('USER')

Kill old TensorBoard sessions
!kill -9 $(pgrep -u $username -f "multiprocessing-fork")
!kill -9 $(pgrep -u $username tensorboard)

%reload_ext tensorboard
Run with --load_fast=false, since current TensorBoard version has an issue with the␣
→˓profiler plugin
(more info https://github.com/tensorflow/tensorboard/issues/4784)
%tensorboard --logdir=$logdir --port=$rand_port --load_fast=false

print(f"Go to https://jupyter.lisa.surfsara.nl/jhlsrf016/user/{username}/proxy/{rand_
→˓port}/#pytorch_profiler")

2.2.7 Understanding the profiler output

Views

In the first fiew, you see an overview of the profiling. This is probably the display that will provide the most actionable
insights. What do we see? This blog contains a very detailed explaination. Below, we will cover the basics, but if you
are going to profile your own code, the blog may prove very useful to get the most out of the profiler output.

Step Time Breakdown

Let’s start with the central part, the Step Time Breakdown.

16 Chapter 2. Contents:

https://pytorch.org/blog/pytorch-profiler-1.9-released/

HPML blogposts, Release 0.1

Here, we see how long each ‘Step’ took, and what that time was spent on. A ‘Step’ is a single training step, i.e. a forward
and backeward pass on a single batch. If you look carefully at the train_profiling(...) code, and in particular
the torch.profiler.profile call we did there, you see that we passed wait=10, warmup=10, active=10 as
arguments. What that means is, it waits for the first 10 steps (i.e. step 0-9), then, the profiler gets activated, but discards
it results (for step 10-19), and then 10 steps get recorded (i.e. step 20-29). This cycle will keep repeating itself as long
as we were training. With a batch size of 128 and 50000 images in total, the cycle would normally be repeated 13 times
if we trained for one epoch. The PyTorch profiler calls each of these cycles a ‘Span’. In this case however, we cut the
training shorter for faster profiling, and only trained for 60 iterations. Thus, we’ll only see two spans in our profile.
Thus, this cycle repeated 13 times.

Spans

Click the ‘Spans’ button. Here, you see that indeed, we recorded 2 ‘spans’. If you click on span 2, you’ll see that this
contains the timing for step 50-59.

2.2. Profiling with PyTorch 17

HPML blogposts, Release 0.1

Typically, recording only a few iterations/spans is enough. In very particular cases, you might be interested how the
speed develops over time. Then, it is useful to record and inspect multiple spans.

GPU Summary

The next window that is useful (if training on GPUs) is the GPU Summary. However, in order to understand the GPU
summary, it’s good to know a little bit about how cores on a GPU are organized. Below, you see the schematic layout
of an Nvidia A100 GPU chip (source)

The tiny green dots in this image are GPU cores. They are organized together in groups, so called SM (or: streaming

18 Chapter 2. Contents:

https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf

HPML blogposts, Release 0.1

multiprocessor) units. An A100 GPU has 128 SM units. Below, we see a schematic representation of a single SM on
an Nvidia A100 GPU

Here, you see that a single SM has many different cores: 16 cores that can perform integer operations, 16 cores that
can perform single precision floating point operations (i.e. operations on numbers represented in memory by 32 bits),
8 cores that can perform double precision floating point operations (i.e. operations on numbers represented in memory
by 64 bits) and a block of Tensor Cores (special cores for tensor operations). An SM only has a single instruction unit.
What that means that all cores in an SM can only perform one operation at the same time. I.e. we can not have 1
FP32 core doing subtraction, and the other multiplication, within the same SM unit. Of course, different SM units can
work on different things. I.e. this particular GPU could in theory run 128 different operations, and run each of those
operations on e.g. 16 single precision floating point numbers in parallel. This massive parallelism is what makes a
GPU so good at processing many data elements with the same operation, as is done in a lot of matrix operations.

Ok, back to the summary.

2.2. Profiling with PyTorch 19

HPML blogposts, Release 0.1

The first thing to note here is the GPU Utilization. As we can see, in this example it is only 3.39%. That means that
96.61% of the time our GPU was doing nothing, typically because it is waiting for other resources (I/O, CPU, . . .).
That’s bad: we have a very expensive GPU in this machine, and we’re hardly using it!

Note that a high GPU utilization does not necessarily mean we are using the GPU efficiently. Even if just a single core
(out of the thousands that a GPU has) is working on a task the full time, GPU utilization would be 100%. However, it
would mean we are only using a single core, on a single SM, leaving all of those others idle. As you can see, a high
GPU utilization is not a guarantee for efficient usage, but it is a minimum requirement.

The Est SM Efficiency provides us some deeper insight. It is the (average) fraction of SMs that were in use over the
profiled time period. A low percentage here means SMs have been idling. The aforementioned extreme case of a single
core (in a single SM) working all the time would immediately be identified with this metric: GPU utilization would be
100%, but Est SM Efficiency would be 1/128 (in case of an A100 with 128 SM units in total). However, a high Est SM
Efficiency is still not enough to guarantee efficient usage. A use case that occupies one core in each SM would also
show a high Est SM Efficiency. In a machine learning workload, (partially) empty SMs can occur if there are operations
being performed on relatively small matrices. That can be because input sizes are small, or because the batch size is
small. I.e. batch size is one of the things you can explore if you see a low Est. SM Efficiency.

Finally, we see Kernel Time using Tensor Cores. We’ll get back to those later.

20 Chapter 2. Contents:

HPML blogposts, Release 0.1

Execution Summary

The execution summary gives is an overview of which components took the most time (averaged over the steps in this
Span).

Here, we see that the average step time was 134 ms. The vast majority of that (98ms) was taken by data loading.
Another substantial chunk was CPU execution.

Performance Recommendation

The final part of the overview window is the performance recommendation. Based on the timings measured in the
profile, the PyTorch Profiler will try to give you some advice on what to do to speed up your code.

Often, these tips are quite decent, though the Profiler doesn’t know what you’ve already done. Also, which piece of
advice will help the most might be better judged by you.

2.2. Profiling with PyTorch 21

HPML blogposts, Release 0.1

2.2.8 Improving I/O performance

Increasing the number of workers for dataloading

We’ve seen that 73.2% of our time was spent in dataloading, rather than computing anything. Clearly, this is the first
problem we want to tackle. Let’s start by following the PyTorch profilers advice, and increase the amount of workers
(i.e. CPU cores) used for dataloading.

First, let’s see how many cores we have available in this environment:

[]: def get_cpu_count():
return len(os.sched_getaffinity(0))

print(f"Number of CPUs: {get_cpu_count()}")

Since the bulk of our computation happens on the GPU, we can probably use all of the CPU cores we have available
for dataloading (if you would be training on the CPUs as well, it might be more efficient to designate a few CPU cores
for dataloading, and the rest for training).

Try setting the NUM_DATALOADER_WORKERS to 3,

[]: BATCH_SIZE = 128
EPOCHS = 1
LEARNING_RATE = 1e-4
NUM_DATALOADER_WORKERS = 3
BREAK_AFTER_N_ITERATIONS = 60

LOGGING_INTERVAL = 10 # Controls how often we print the progress bar

model = CIFAR10CNN().to(device)
optimizer = optim.Adam(model.parameters(), lr=LEARNING_RATE) # optim.<OPTIMIZER_FLAVOUR>
→˓(model.parameters(), lr=LEARNING_RATE)

transform=transforms.Compose([
transforms.ToTensor(),
Normalize the data to 0 mean and 1 standard deviation, now for all channels of RGB
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))

])

PNG_DATA = os.path.join(DATA_PATH, 'cifar10_png')
label_filename = os.path.join(DATA_PATH, "labels.pkl")
train_dataset = Cifar10PNGDataset(label_file = label_filename, img_dir = PNG_DATA,␣
→˓transform=transform)

train_loader = torch.utils.data.DataLoader(
train_dataset,
batch_size=BATCH_SIZE,
pin_memory=use_cuda,
shuffle=True,
num_workers=NUM_DATALOADER_WORKERS

)

test_loader = torch.utils.data.DataLoader(
datasets.CIFAR10(DATA_PATH, train=False, transform=transform, download=True),

(continues on next page)

22 Chapter 2. Contents:

HPML blogposts, Release 0.1

(continued from previous page)

batch_size=BATCH_SIZE,
pin_memory=use_cuda,
shuffle=False,
num_workers=NUM_DATALOADER_WORKERS

)

logdir = "logs/num_dataloaders/" + datetime.now().strftime("%Y%m%d-%H%M%S")

fit_profiling(model, optimizer, EPOCHS, device, train_loader, test_loader, LOGGING_
→˓INTERVAL, logdir, BREAK_AFTER_N_ITERATIONS)

[]: %%capture --no-stdout

REFERENCE PROFILE:
logdir = os.path.join(DATA_PATH,"logs/num_dataloaders/ref")

import random, os

rand_port = random.randint(6000, 8000)
username = os.getenv('USER')

Kill old TensorBoard sessions
!kill -9 $(pgrep -u $username -f "multiprocessing-fork")
!kill -9 $(pgrep -u $username tensorboard)

%reload_ext tensorboard
Run with --load_fast=false, since current TensorBoard version has an issue with the␣
→˓profiler plugin
(more info https://github.com/tensorflow/tensorboard/issues/4784)
%tensorboard --logdir=$logdir --port=$rand_port --load_fast=false

print(f"Go to https://jupyter.lisa.surfsara.nl/jhlsrf016/user/{username}/proxy/{rand_
→˓port}/#pytorch_profiler")

Inspecting & Interpreting results

You should see something like this:

2.2. Profiling with PyTorch 23

HPML blogposts, Release 0.1

As we can see, the average step time has gone down substantially, to 134 to 39 ms. Note that for codes that are limited
by I/O, you might see large variations: we are working on a network filesystem here, meaning that all of us in the course
are reading from the same disks. If one of your fellow students is hitting the filesystem at the same time as you are, it
might slow down substantially. This variation is also visible between step 51, 54 and 57.

Note that this variation is *not* the reason we see so little dataloader time at e.g. step 52 and 53. The data for
step 51-53 gets loaded during step 48-50 by the three dataloaders. However, since the computation is faster than the
dataloading, the 3 dataloaders are not yet finished when step 51 starts. Thus, step 51 is waiting for the dataloaders
to finish before it can start computing, which is what you see as ‘DataLoader’ time in the profile. Once that I/O is
completed, we immediately have *three* batches, since we had three dataloaders. That’s why step 52 and 53 don’t
show any Dataloading time anymore.

As we can see, GPU utilization has also gone up to 11% or so. Not great, but still a lot better than before.

Transformations

Transformations are also part of the Dataloading pipeline. However, these are performed on the CPU and that may
take substantially more time that the GPU needs to subsequently train the network. One way to speedup the dataIO is
to perform the normalization as part of the network itself, so that it can be executed on the GPU. Note that this is not
always useful: it depends on the balance between the amount of work between the GPU and the CPU. If the dataloading
on the CPU can already keep up with the GPU, there’s no point in offloading more operations to the GPU. In this case,
we have a pretty light network however, and we see if we can shave off a little bit more of the dataloading time.

Below, we redefine the network, with the first layer now being the normalization.

[]: class CIFAR10CNN(nn.Module):
def __init__(self):

super().__init__()

4 convolution layers, with a non-linear activation after each.
maxpooling after the activations of the 2nd, 3rd, and 4th conv layers
2 dense layers for classification

(continues on next page)

24 Chapter 2. Contents:

HPML blogposts, Release 0.1

(continued from previous page)

log_softmax
#
As for the number of channels of each layers, try to experiment!

self.feature_extractor = nn.Sequential(
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
nn.Conv2d(in_channels=3, out_channels=8, kernel_size=3, padding=1),
nn.ReLU(),

nn.Conv2d(in_channels=8, out_channels=32, kernel_size=3, padding=1),
nn.ReLU(),
nn.MaxPool2d(kernel_size=2),

nn.Conv2d(in_channels=32, out_channels=64, kernel_size=3, padding=1),
nn.ReLU(),
nn.MaxPool2d(kernel_size=2),

nn.Conv2d(in_channels=64, out_channels=128, kernel_size=3, padding=1),
nn.ReLU(),
nn.MaxPool2d(kernel_size=2),

)

in_features of the first layer should be the product of the output shape of␣
→˓your feature extractor!

E.g. if the output of your feature extractor has size (batch x 128 x 4 x 4),␣
→˓in_features = 128*4*4=2048

self.classifier = nn.Sequential(
nn.Flatten(),
nn.Linear(in_features=2048, out_features=2048),
nn.ReLU(),
nn.Linear(in_features=2048, out_features=10),
nn.LogSoftmax(dim=1)

)

def forward(self, x):
features = self.feature_extractor(x)

return self.classifier(features)

[]: BATCH_SIZE = 128
EPOCHS = 1
LEARNING_RATE = 1e-4
NUM_DATALOADER_WORKERS = 3
BREAK_AFTER_N_ITERATIONS = 60

LOGGING_INTERVAL = 10 # Controls how often we print the progress bar

model = CIFAR10CNN().to(device)
optimizer = optim.Adam(model.parameters(), lr=LEARNING_RATE) # optim.<OPTIMIZER_FLAVOUR>
→˓(model.parameters(), lr=LEARNING_RATE)

(continues on next page)

2.2. Profiling with PyTorch 25

HPML blogposts, Release 0.1

(continued from previous page)

transform=transforms.Compose([
transforms.ToTensor(),
Normalization now done in the network
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))

])

PNG_DATA = os.path.join(DATA_PATH, 'cifar10_png')
label_filename = os.path.join(DATA_PATH, "labels.pkl")
train_dataset = Cifar10PNGDataset(label_file = label_filename, img_dir = PNG_DATA,␣
→˓transform=transform)

train_loader = torch.utils.data.DataLoader(
train_dataset,
batch_size=BATCH_SIZE,
pin_memory=use_cuda,
shuffle=True,
num_workers=NUM_DATALOADER_WORKERS

)

test_loader = torch.utils.data.DataLoader(
datasets.CIFAR10(DATA_PATH, train=False, transform=transform, download=True),
batch_size=BATCH_SIZE,
pin_memory=use_cuda,
shuffle=False,
num_workers=NUM_DATALOADER_WORKERS

)

logdir = "logs/transforms/" + datetime.now().strftime("%Y%m%d-%H%M%S")

fit_profiling(model, optimizer, EPOCHS, device, train_loader, test_loader, LOGGING_
→˓INTERVAL, logdir, BREAK_AFTER_N_ITERATIONS)

[]: %%capture --no-stdout

REFERENCE PROFILE:
logdir = os.path.join(DATA_PATH,"logs/transforms/ref")

import random, os

rand_port = random.randint(6000, 8000)
username = os.getenv('USER')

Kill old TensorBoard sessions
!kill -9 $(pgrep -u $username -f "multiprocessing-fork")
!kill -9 $(pgrep -u $username tensorboard)

%reload_ext tensorboard
Run with --load_fast=false, since current TensorBoard version has an issue with the␣
→˓profiler plugin
(more info https://github.com/tensorflow/tensorboard/issues/4784)
%tensorboard --logdir=$logdir --port=$rand_port --load_fast=false

(continues on next page)

26 Chapter 2. Contents:

HPML blogposts, Release 0.1

(continued from previous page)

print(f"Go to https://jupyter.lisa.surfsara.nl/jhlsrf016/user/{username}/proxy/{rand_
→˓port}/#pytorch_profiler")

Inspecting and interpreting results

You should see something like this

We’ve managed to reduce step time to 33s now: not a huge gain, but the dataloading part is only 1.9s per step now on
average. So, there’s not much more to gain. You may see a peak at some steps. If you’re eager, you can try to increase
the prefetch_factor, which is an additional argument you can pass to the torch.utils.data.DataLoader. This
means more samples will be loaded in advance, and you’re less sensitive to fluctuations in I/O speed. However, it will
increase (CPU) memory consumption, as you’ll need to hold more samples in (CPU) memory. If you feel up to it, you
can add it in the code above, rerun the profiling and start a new TensorBoard.

Final remarks on optimizing I/O

In this case, we’ve managed to reduce the data loading overhead to almost zero. The reason is that the dataset we work
on in this tutorial is tiny: 198 MB in total. This is simply cached by our network filesystem, and therefore I/O is very
fast.

In general however, the way this dataset is stored, as one file per sample (image), is *very bad* for performance. This
is because filesystems need to read metadata (where is the file located, how big is it, updating the last access date, etc)
for every individual file. On average, each cifar10 image is about 2KB. Imagine how large the overhead of reading
overhead (metadata) for such a small file! This is not a huge issue on e.g. a local laptop with an SSD, since since
you’re the only one using that disk and since SSDs can do metadata operations very quickly. On large clusters however,
metadata operations are (comparatively speaking) very slow. Large clusters typically use network filesystems that are
optimized for throughput, i.e. bandwidth, but can process relatively modest amounts of files per second.

2.2. Profiling with PyTorch 27

HPML blogposts, Release 0.1

Thus, generally, it is advised to pack samples together in a packed file format. It doesn’t hurt on your local laptop,
and is all-but-essential on large clusters. Many packed file formats are available, examples are LMDB, HDF5/h5py,
TFRecords, petastorm, or even zip or tarballs (but don’t compress, since uncompressing takes time too!). One thing to
note is that you’ll want a packed file format where you can read a single sample without having to load the whole file
in memory.

In some clusters, the nodes have local storage. In that case, an option to increase the performance is to first copy the
data to local storage. But: also these data copies are a lot faster if you copy a single file, rather than a large amount of
small files. So even in those cases, packed file formats are benificial.

2.2.9 New baseline: a heavier model

Of course, in this tutorial, we’ve been mostly playing with a toy model. Realistic models are a lot heavier to train. Let’s
try a real RESNET50 model. Torchvision has such a model defined by default. Let’s use it to set a new baseline for
our training run.

[]: model = models.resnet50()
print(model)

Because this code produces much larger trace files, we decrease the number of active iterations, and stop the training
after 16 iterations (i.e. one ‘span’). Otherwise, the trace files will be very slow to analyze.

[]: # This is the actual train loop we will use for profiling
def train_profiling(model, device, train_loader, optimizer, epoch, log_interval, logdir,␣
→˓break_idx):

model.train()

Create a torch.profiler.profile object, and call it as the last part of the␣
→˓training loop
with torch.profiler.profile(
activities=[

torch.profiler.ProfilerActivity.CPU,
torch.profiler.ProfilerActivity.CUDA],

schedule=torch.profiler.schedule(
wait=10,
warmup=3,
active=3),

on_trace_ready=torch.profiler.tensorboard_trace_handler(logdir, worker_name='worker0
→˓'),

record_shapes=True,
profile_memory=True, # This will take 1 to 2 minutes. Setting it to False could␣

→˓greatly speedup.
with_stack=True

) as p:
for batch_idx, (data, target) in enumerate(train_loader):

move data and target to the gpu, if available and used
data, target = map(lambda tensor: tensor.to(device, non_blocking=True),␣

→˓(data, target))

optimizer.zero_grad()
output = model(data)
loss = F.nll_loss(output, target)
loss.backward()

(continues on next page)

28 Chapter 2. Contents:

HPML blogposts, Release 0.1

(continued from previous page)

optimizer.step()

accuracy = metrics.accuracy(output, target)

if batch_idx % log_interval == 0:
print(

f'Train Epoch: {epoch} [{batch_idx * len(data)}/{len(train_loader.
→˓dataset)} ({100 * batch_idx / len(train_loader):.0f}%)]'

f'\tLoss: {loss.detach().item():.6f}'
f'\tAccuracy: {accuracy.detach().item():.2f}'

)

yield loss.detach().item(), accuracy.detach().item()

p.step()

Allow to break early for the purpose of shorter profiling
if (break_idx is not None) and (batch_idx == break_idx):

break

[]: BATCH_SIZE = 128
EPOCHS = 1
LEARNING_RATE = 1e-4
NUM_DATALOADER_WORKERS = 3
BREAK_AFTER_N_ITERATIONS = 16

LOGGING_INTERVAL = 10 # Controls how often we print the progress bar

Now use resnet50
model = models.resnet50()
model = model.to(device, memory_format=torch.channels_last)
optimizer = optim.Adam(model.parameters(), lr=LEARNING_RATE) # optim.<OPTIMIZER_FLAVOUR>
→˓(model.parameters(), lr=LEARNING_RATE)

transform=transforms.Compose([
transforms.ToTensor(),
Normalization now done in the network
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))

])

PNG_DATA = os.path.join(DATA_PATH, 'cifar10_png')
label_filename = os.path.join(DATA_PATH, "labels.pkl")
train_dataset = Cifar10PNGDataset(label_file = label_filename, img_dir = PNG_DATA,␣
→˓transform=transform)

train_loader = torch.utils.data.DataLoader(
train_dataset,
batch_size=BATCH_SIZE,
pin_memory=use_cuda,
shuffle=True,
num_workers=NUM_DATALOADER_WORKERS

(continues on next page)

2.2. Profiling with PyTorch 29

HPML blogposts, Release 0.1

(continued from previous page)

)

test_loader = torch.utils.data.DataLoader(
datasets.CIFAR10(DATA_PATH, train=False, transform=transform, download=True),
batch_size=BATCH_SIZE,
pin_memory=use_cuda,
shuffle=False,
num_workers=NUM_DATALOADER_WORKERS

)

logdir = "logs/resnet50_baseline/" + datetime.now().strftime("%Y%m%d-%H%M%S")

fit_profiling(model, optimizer, EPOCHS, device, train_loader, test_loader, LOGGING_
→˓INTERVAL, logdir, BREAK_AFTER_N_ITERATIONS)

[]: %%capture --no-stdout

REFERENCE PROFILE:
logdir = os.path.join(DATA_PATH,"logs/resnet50_baseline/ref")

import random, os

rand_port = random.randint(6000, 8000)
username = os.getenv('USER')

Kill old TensorBoard sessions
!kill -9 $(pgrep -u $username -f "multiprocessing-fork")
!kill -9 $(pgrep -u $username tensorboard)

%reload_ext tensorboard
Run with --load_fast=false, since current TensorBoard version has an issue with the␣
→˓profiler plugin
(more info https://github.com/tensorflow/tensorboard/issues/4784)
%tensorboard --logdir=$logdir --port=$rand_port --load_fast=false

print(f"Go to https://jupyter.lisa.surfsara.nl/jhlsrf016/user/{username}/proxy/{rand_
→˓port}/#pytorch_profiler")

Inspecting and interpreting results

Let’s have a look at our new baseline:

30 Chapter 2. Contents:

HPML blogposts, Release 0.1

As we can see, a step now takes 229 ms, out of which 37s are spend on GPU kernel execution.

Improving GPU kernel execution time by mixed precision

Cores on an Nvidia GPU have a dedicated processing unit for processing tensor operations, so-called “Tensor Cores”.
These can do operations on tensors much faster than when those tensors would have to be performed with the traditional
FP32 units in the core.

The operation that these Tensor Cores perform is called a fused-multiply-add, and they do it on a (small) matrix. They
can do one of these operations every clock cycle of the GPU:

There are some requirements though. On the GPUs that we are working on in this training, the tensor cores only
support operations where tensors A and B are stored as 16-bit precision floating point numbers. Tensor C and D can be
either 16 or 32 bit. Torch has a specific feature called “automatic mixed precision” (AMP for short), which is supported
through the torch.cuda.amp package (see this documentation). In principle, this can be used to automatically convert
the right tensors in the model to 16-bit floating point, so that the Tensor Cores can be used. Note however that you
may need to ‘scale’ your gradients: FP16 floating point numbers have a smaller representable range (since they have
fewer bits to represent the number), which may cause underflows in your gradients (i.e. numbers in your gradient may
become smaller than the smallest number that can be represented with the FP16 datatype). If that happens, you need
to do gradient scaling using the torch.cuda.amp.GradScaler. In the below example, we exlcuded that, since here
we just want to demonstrate the potential speedup.

[]: from torch import autocast

This is the actual train loop we will use for profiling
def train_profiling(model, device, train_loader, optimizer, epoch, log_interval, logdir,␣
→˓break_idx=None):

model.train()

Create a torch.profiler.profile object, and call it as the last part of the␣
→˓training loop

(continues on next page)

2.2. Profiling with PyTorch 31

https://pytorch.org/docs/stable/amp.html

HPML blogposts, Release 0.1

(continued from previous page)

with torch.profiler.profile(
activities=[

torch.profiler.ProfilerActivity.CPU,
torch.profiler.ProfilerActivity.CUDA],

schedule=torch.profiler.schedule(
wait=10,
warmup=3,
active=3),

on_trace_ready=torch.profiler.tensorboard_trace_handler(logdir, worker_name='worker0
→˓'),

record_shapes=True,
profile_memory=True, # This will take 1 to 2 minutes. Setting it to False could␣

→˓greatly speedup.
with_stack=True

) as p:
for batch_idx, (data, target) in enumerate(train_loader):

move data and target to the gpu, if available and used
data = data.to(device, non_blocking=True, memory_format=torch.channels_last)
target = target.to(device, non_blocking=True)

optimizer.zero_grad()

Here, we use automatic mixed precision:
with autocast(device_type='cuda'):

output = model(data)
loss = F.nll_loss(output, target)

loss.backward()
optimizer.step()

accuracy = metrics.accuracy(output, target)

if batch_idx % log_interval == 0:
print(

f'Train Epoch: {epoch} [{batch_idx * len(data)}/{len(train_loader.
→˓dataset)} ({100 * batch_idx / len(train_loader):.0f}%)]'

f'\tLoss: {loss.detach().item():.6f}'
f'\tAccuracy: {accuracy.detach().item():.2f}'

)

yield loss.detach().item(), accuracy.detach().item()

p.step()

Allow to break early for the purpose of shorter profiling
if (break_idx is not None) and (batch_idx == break_idx):

break

[]: BATCH_SIZE = 128
EPOCHS = 1
LEARNING_RATE = 1e-4
NUM_DATALOADER_WORKERS = 3

(continues on next page)

32 Chapter 2. Contents:

HPML blogposts, Release 0.1

(continued from previous page)

BREAK_AFTER_N_ITERATIONS = 16

LOGGING_INTERVAL = 10 # Controls how often we print the progress bar

Now use resnet50
model = models.resnet50()
model = model.to(device, memory_format=torch.channels_last)
optimizer = optim.Adam(model.parameters(), lr=LEARNING_RATE) # optim.<OPTIMIZER_FLAVOUR>
→˓(model.parameters(), lr=LEARNING_RATE)

transform=transforms.Compose([
transforms.ToTensor(),
Normalization now done in the network
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))

])

PNG_DATA = os.path.join(DATA_PATH, 'cifar10_png')
label_filename = os.path.join(DATA_PATH, "labels.pkl")
train_dataset = Cifar10PNGDataset(label_file = label_filename, img_dir = PNG_DATA,␣
→˓transform=transform)

train_loader = torch.utils.data.DataLoader(
train_dataset,
batch_size=BATCH_SIZE,
pin_memory=use_cuda,
shuffle=True,
num_workers=NUM_DATALOADER_WORKERS

)

test_loader = torch.utils.data.DataLoader(
datasets.CIFAR10(DATA_PATH, train=False, transform=transform, download=True),
batch_size=BATCH_SIZE,
pin_memory=use_cuda,
shuffle=False,
num_workers=NUM_DATALOADER_WORKERS

)

logdir = "logs/autocast/" + datetime.now().strftime("%Y%m%d-%H%M%S")

fit_profiling(model, optimizer, EPOCHS, device, train_loader, test_loader, LOGGING_
→˓INTERVAL, logdir, BREAK_AFTER_N_ITERATIONS)

[]: %%capture --no-stdout

REFERENCE PROFILE:
logdir = os.path.join(DATA_PATH,"logs/autocast/ref")

import random, os

rand_port = random.randint(6000, 8000)
username = os.getenv('USER')

(continues on next page)

2.2. Profiling with PyTorch 33

HPML blogposts, Release 0.1

(continued from previous page)

Kill old TensorBoard sessions
!kill -9 $(pgrep -u $username -f "multiprocessing-fork")
!kill -9 $(pgrep -u $username tensorboard)

%reload_ext tensorboard
Run with --load_fast=false, since current TensorBoard version has an issue with the␣
→˓profiler plugin
(more info https://github.com/tensorflow/tensorboard/issues/4784)
%tensorboard --logdir=$logdir --port=$rand_port --load_fast=false

print(f"Go to https://jupyter.lisa.surfsara.nl/jhlsrf016/user/{username}/proxy/{rand_
→˓port}/#pytorch_profiler")

Inspecting and interpreting results

You should see something like this

We’ll focus on the GPU kernel execution time here. It has decreased from about 37 to 14 ms, and the GPU summary
now tells us that almost 25% of the time spent on executing kernels, it is using the Tensor Cores. You might have
noticed that GPU utilization has gone down in this case, compared to our baseline run. However, here, that’s not a bad
thing: we have essentially reduced the amount of work that needed to be done by moving to reduced precision.

What is problematic though is that the CPU Exec time has gone up. While we haven’t confirmed this, we think it is due
to the extra overhead introduced by the type conversion from FP32 to FP16. So, for this particular network and (small)
input, it is not worth it to use mixed precision - but in many real world cases it does provide a substantial speedup!

34 Chapter 2. Contents:

HPML blogposts, Release 0.1

2.2.10 Other views of the profiler

Here, we’ll just discuss some of the other views of the profiler, without exercises.

In the GPU kernel view, you see a list of all GPU kernels that have been executed. You can see a lot of details, like
how often these particular kernels have been run, how much time that took, if the kernel ran on tensor cores or not,
and things like mean estimated achieved occupancy (we have talked about this metric before when discussing the GPU
summary). It’s hard to gain actionable information from this view.

2.2. Profiling with PyTorch 35

HPML blogposts, Release 0.1

The operator view shows all PyTorch operations that have been executed. The question marks next to the pie graphs
give some additional explaination about what you see there. Similarly, though it gives some interesting insights into
which operators take the most time in your computation, its hard to gain actionable insight from this.

In the trace view, we see a timeline of the execution of the training iterations. At the top, we clearly recognize the 10
iterations that we profiled. Let’s zoom in on one step:

36 Chapter 2. Contents:

HPML blogposts, Release 0.1

The two ‘threads’ at the top show the processes that execute on the CPU. The ‘stream 7’ shows the kernels that execute
on the GPU. You can click on certain operations to see what they are, and how long they took. For example, the purple
block at the top left that says ‘Optimizer. . . ’ is now selected. It shows that the full title is ‘Optmizer.zero_grad’, i.e.
this is the process that fills the gradients with zeroes. Let’s zoom in on that:

We see some pattern being repeated. Zooming in further, we see:

2.2. Profiling with PyTorch 37

HPML blogposts, Release 0.1

Essentially, you see a call stack here. Optmizer.zero_grad called aten::zero_, which called aten::fill_, which
called cudaLaunchKernel, which in turn launced a cuda kernel (the green block in stream 7).

While this process doesn’t take a ton of time, it is mentioned in the PyTorch tuning guide as one of the things that
could be optimized: https://pytorch.org/tutorials/recipes/recipes/tuning_guide.html . It is mentioned that one can set
the parameters to ‘None’ instead of to zero explicitely, which may be more efficient, but might incur slightly different
numerical behaviour.

Zooming in on another part of the step, we see e.g. the 2D convolutions from the forward pass:

Like before, you can recognize the CPU call stack for the aten::conv2d operation, which eventually results in the laucnh
of a kernel on the GPU.

38 Chapter 2. Contents:

https://pytorch.org/tutorials/recipes/recipes/tuning_guide.html

HPML blogposts, Release 0.1

Zooming in on another part, we see some typical part of the backward pass:

Finally, there’s the optimizer step, which will do things like updating the weights:

2.2. Profiling with PyTorch 39

	SURF HPML documentation!
	Contents:
	Large Language Models on Snellius
	1. How we got it running on Snellius
	Loading the Tokenizer and Model
	Generation
	DeepSpeed-Inference

	2. How to run as a module on Snellius
	Supported Models

	3. Examples

	Profiling with PyTorch
	What is profiling?
	Why should I care about profiling?
	When should I care about profiling?
	Define the necessary functions of code
	Define model
	Define function for plotting metric curves
	Define some code to select the right device
	Define train and test loop
	Specify the fitting function
	Defining a custom dataloader

	Creating the profile
	Inspect the profile
	Understanding the profiler output
	Views
	Step Time Breakdown
	Spans
	GPU Summary
	Execution Summary
	Performance Recommendation

	Improving I/O performance
	Increasing the number of workers for dataloading
	Inspecting & Interpreting results
	Transformations
	Inspecting and interpreting results
	Final remarks on optimizing I/O

	New baseline: a heavier model
	Inspecting and interpreting results
	Improving GPU kernel execution time by mixed precision
	Inspecting and interpreting results

	Other views of the profiler

